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LOCAR — a £10 million programme

Science and Policy drivers
Limitations of UK experimental
hydrology base

- uplands/small scale
Management pressures

- lowlands/ larger scale
Lowland permeable catchments
- linking surface water and
groundwater

Water Framework Directive

- ecological quality

Need for new interdisciplinary
science

Zhalk

Pang
bou rrﬁ"

o Piddle .



Scientific Aims

To develop an improved understanding of
hydrological, hydrogeological, geomorph-
ological and ecological interactions within
permeable catchment systems, and their
associated aquatic habitats, at different
spatial and temporal scales and for different

land uses;
To develop improved modelling tools to inform

and support the integrated management of
lowland catchment systems.



Recharge site

Hydra evaporation sensor

Automatic weather station

Solar radiation

Rain gauge
Bore Hole

Datalogger

Soil water suction samples

=
e _
" I “ Puncture tensiometers at
10cm intervals to 1m
4m access tubes
9 m access tube Equitensiometer to
10m at 1m intervals Deep tensiometer

“ 30 - 50 m access tube
(experimental)

Instruments

The HYDRA:
actual evaporation
in the

Pang/Lambourn



LOCAR SCIENCE PROJECTS |

Evaporation

e Assessment of new methods to estimate grid or catchment
evaporation using satellite and ground-based measurements.

e The influence of woodlands on recharge in the Pang
catchment

Soils
e Flow and transport of water in the Chalk unsaturated zone

Groundwater

e Characterising permeability and groundwater flow in Chalk
catchments using tracer technigues

e |[nvestigation of groundwater flow heterogeneity in the Chalk
aquifer using detailed borehole arrays and stochastic
modelling techniques

e Assessing stream-groundwater interactions in lowland chalk
catchments using hydrogeophysical characterisation of the
riparian zone



LOCAR SCIENCE PROJECTS |

e Towards a methodology for determining the pattern and
magnitude of recharge through drift deposits

Sediments

e The fine sediment budgets of lowland permeable
catchments and their implications for nutrient and
contaminant transfer

e Fine sediment and nutrient dynamics in lowland
permeable streams: establishing the significance of biotic
processes for sediment modification

e Vegetation management influences on fine sediment and
propagule dynamics within groundwater-fed rivers:
Implications for river management, restoration and riparian
biodiversity.



LOCAR SCIENCE PROJECTS Il

Nutrients

e Hydrogeochemical functioning of lowland permeable
catchments: from process understanding to environmental
management

Ecology

e Utilisation of off-river habitats by lowland river fishes:
Influences of flow regime and land-use change

e Ecological significance of surface and subsurface
exchange in lowland channels



Hydrology of the Pang and
Lambourn



The Chalk




Pang and Lambourn topography and river system
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Cumecs

Cumecs

Stream
hydrographs

Lambourn: daily flow 1997-2004

\ \ \ \ \ \
1997 1998 1999 2000 2001 2002 2003 20C

Pang: daily flow 1997-2004

\ \ \ \ \
1997 1998 1999 2000 2001 2002 2003 2004

Hydrochemistry of the Pang,
Lambourn and Palaeogene




Seasonal variation In catchment area

Autumn 2002 Spring 2003
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Chalk groundwater



Pang-Lambourn catchment
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Packer Test Results

Borehole A
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Videoscan logs for Borehole A
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3) Steep temperature gradient

indicates low vertical flow; I ns | g h t fro m
4) But in the same region there is a g eo p h yS | CS

large diluting feature;

6) Most horizons are (am b | ent
supported by features in — 5) Impeller and heat-pulse flow-
the calliper log; meters show discrepancy; con d |t| on S)
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7) Except the ‘Chalk
Rock’, indicated by the
Gamma log.
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profile are indicative of flow
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Inversion of in/outflows from FEC logs

Red line indicates the

Upflow obtained by Solid lines show fits to the
inverse modelling of FEC data using an advection
the FEC data dispersion model of the
borehole
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Note that these flows are
very high!!



Note that

the

temperature gradient
has now been lost

Insight from geophysics
(pumped condition)
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Inversion of in/outflows from FEC logs
(pumped conditions)

Red line indicates the
Upflow obtained by
inverse modelling of

the FEC data

Solid lines show fits to the
FEC data using an advection
dispersion model of the
borehole
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Implication of drilling a borehole
and pumping an abstraction well
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Stream-aquifer interactions
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Structure and control on springs

Springs at head
of Lambourn at
top of New Pit
Chalk

on New Pit or
Glynde Marls

Possible fault
zonhe control

Spring at head
of Pang at top
of Lewes
Chalk on
Shoreham
Marl {?)

Probably fault / fracture
zone controlled




Springs and sinks on Pang/Lambourn
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Boxford Site borehole transects




Water levels at
Westbrook,
River Lambourn
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Flow mechanisms in the river corridor

Flood plain

Y — \Water table

— & Groundwater flow



The Chalk unsaturated zone



GWL (mAOD)

Fast water table response
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Slow solute migration
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Conceptual dual permeability model




Simulation of
unsaturated zone
matrix-fracture
Interactions
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Recharge site instrumentation




Chalk unsaturated zone and groundwater
- recharge period
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Effective rainfall and groundwater rise
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Modelling nutrients at
catchment-scale



INCA nitrogen pathways

and transformations

Urban waste

immobilisation

mineralisation

Ammonium + Ammonium + Nitrogen
Nitrate fertiliser  Nitrate deposition Fixation
22 AR Y :
EE——
Nitrate Plant Ammonium Plant
Addition uptake  Addition uptake
denitrification —X nitrification A 4 . prt .
< mineralisation )
- NO; - NH, Organic N
Reactive Soil Zone
Leaching Leaching
_ toriver _ toriver
-~ -~ fixation i
= NO, = NH, Organic N
Groundwater Zone
N,O N,
I I denitrification

NH,

NH,

volatilisation I

nitrification I

NO,




INCA-Chalk
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Initial trial: Lambourn catchment

Legend

Lambourn river

I

Catchment
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Travel time distributions through unsaturated zone

Distribution of surface area wersus depth of unsaturated zone: resolution=50 paths Lambourn catchment

Froportion of surface associated with pathway (%)

a 20 40 B0 a0 100 120
Depth of unsaturated zone (m)



Hindcast simulation, INCA-Chalk, Lambourn: simulated
versus observed flow and nitrate at Welford (EA data)
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Some conclusions (1)

Hydrological science has some way to go before
understanding these Chalk systems can be thought
of as sufficient to adequately manage water quality,
wetlands, and individual abstractions without
significant risk of error

The management of riverine and riparian ecology
requires a more detailed understanding of flow
regimes than we currently have

Interpretation of pumped borehole data can be
misleading — the construction of a borehole and
perturbation by pumping can change flow paths

Unsaturated processes are important in solute
transmission, in maintaining evaporation and
potentially in maintaining drought flows



Some conclusions (2)

At present regional numerical models simulate very few of
the mechanisms discussed. The development of appropriate
models to represent this sort of complexity is needed to help
understand, predict behaviour of and design monitoring for
catchments under changing land use and climate

However, numerical models are the only way forward to
Integrate diverse data sets and provide a unified
Interpretation of hydrological and hydrogeological response
— the EA plans for progressive development of regional
models are an important step in this direction

Simplified models can represent important characteristics of
catchment-scale flow and solute transport, and provide
useful support for policy and catchment scale management

Integrated multidisciplinary research is essential to improve
our understanding of groundwater systems; current
momentum should be maintained



