Guide To Good Practice

Water Supply Borehole Location, Construction and Headworks
Water Supply Borehole Location, Construction and Headworks

This guidance has been prepared by the Scottish Environment Protection Agency (SEPA) to raise awareness of both good and bad practice in the siting, construction and completion of water supply boreholes. This document has been modified from an Environment Agency document of the same title. SEPA gratefully acknowledges the use of the Environment Agency document to produce this Scottish version.

Who is it aimed at?

It is intended to help owners of existing boreholes to protect their sources. It is also for anyone considering having a borehole drilled. It tells you what to look for, what to specify and what your responsibilities are, as well as helping drillers submit realistic prices for doing the job properly and to adopt the necessary high standards.

Why is it needed?

It is important that the right precautions are taken when planning and constructing water supply boreholes, to prevent contamination of the sources themselves and pollution to the groundwater in general. There are many examples of badly constructed, completed or maintained private water supply boreholes, which can pose a risk to source owners. Once drilled and completed a borehole is often out of sight and out of mind – until things go wrong, e.g. becomes polluted, fails environmental health checks¹, or the output falls.

These guidelines are not prescriptive; SEPA does not have a standard specification for drilling or completing water supply boreholes. Common objectives must be met, but precisely how they are achieved is a matter for the client and contractor. Both have legal and other responsibilities and legal liabilities. The client’s interests must be protected, whilst the contractor is usually looked on as ‘the expert’ in these matters, and is expected to use designs, materials and workmanship appropriate to the setting and risks.

What does it cover?

The guidelines focus on those aspects of borehole siting, construction and headworks design relevant to source protection. Further details are provided in the text and in the tables and diagrams at the end of this document.

Other considerations

There are a number of other factors that need to be considered when planning or constructing a borehole, which are beyond the scope of this guidance. They include:

- regulatory control;
- health and safety;
- electrical safety and regulations;
- dangers from toxic or explosive gases;
- leaking sewers, effluent disposal from septic tanks;
- storage, handling and accidental spillages of fuels and chemicals.
- the presence of buried services (gas, electric etc);

A list of useful references can be found at the back of this document.
Legal liabilities

Although at present there is no requirement for owners of boreholes to inform SEPA of any intention to abstract water a new abstraction control regime will be implemented in 2005. This is likely to require water abstractors to apply to SEPA for authorisation. This will be via notification, General Binding Rules or a licence.

It is a criminal offence to cause or knowingly permit groundwater to become polluted, with heavy penalties in a sheriff court, or an unlimited fine and/or imprisonment on indictment. If source owners allow pollution of groundwater to occur, for example by surface contamination draining down their borehole, they not only jeopardise their own water supply, but they could also be prosecuted by SEPA, and be responsible for cleaning up the groundwater. Similarly, if the contractor does not design or construct the borehole properly, taking account of the risks, they too could be liable.

Once polluted groundwater is always expensive, and often impossible, to clean up. SEPA’s philosophy is that prevention is better than cure.

Test pumping

To determine the yield of a borehole a period of test pumping is carried out. It is recommended that water quality samples should be taken at the end of the test, to determine whether the source is contaminated and whether the water is fit for the intended use. The latter issue falls within the remit of the local Environmental Health department. In addition to quality sampling, it is important that the pumping rates and water levels are measured accurately before, during and after the pumping period.

The information obtained can be used to select appropriate permanent pumping equipment. It also is a measure of the borehole performance at the time of drilling, and can be a useful reference to indicate future deterioration in the borehole or pump performance, or overpumping of the aquifer unit tapped by the borehole. Source owners are advised to keep records of borehole water levels during the operational life of the borehole.

Borehole records

Source owners should obtain a copy of the driller’s log, showing construction details and strata penetrated, as well as the pumping test results, from their contractor at the time of construction and testing.

Drillers are required by law to give prior notification to the British Geological Survey of their intention to drill any boreholes over 15m deep, and to send their completion records to them.
Other useful guidance

Other relevant guidance and references include:

SEPA's Groundwater Protection Policy for Scotland, 2003
Pollution Prevention Guidelines, which gives advice on certain potentially polluting activities:
- PPG 2 - Above ground oil storage tanks
- PPG 4 - Disposal of sewage where no mains drainage is available
- PPG 8 - Safe storage and disposal of used fuel oils
- PPG 9 - The prevention of pollution of Controlled Waters by pesticides
- PPG17 - Dairies and other milk handling operations

Scottish Executive
- Keeping It Safe: Is your water supply safe?

Drinking Water Inspectorate (DWI)

Health & Safety Executive

Others
- Groundwater Regulations 1998 (SI NO.2746)
- Control of Pollution (Silage, Slurry and Agricultural Fuel Oil) Regulations, 2003
- Institute of Electrical Engineers (IEE) Regulations, 16th Edition
- Control of Substances Hazardous to Health (COSHH) Regulations, 1995
- The American Water Works Association Standard for Water Wells (ANSI/AWWA A100-90)
- Monitoring Maintenance and Rehabilitation of Water Supply Wells. Ciria Report 137
- BS 879 Part 1 and 2, 1985 – water well casing
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Good Practice</th>
<th>Bad Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Safe water source</td>
<td>- Follow all hygiene guidelines</td>
<td>- Violate hygiene guidelines</td>
</tr>
<tr>
<td>2. Seeding material</td>
<td>- Choose appropriate material</td>
<td>- Use inappropriate material</td>
</tr>
<tr>
<td>3. Water treatment</td>
<td>- Use a suitable water treatment method</td>
<td>- Use an unsuitable water treatment method</td>
</tr>
<tr>
<td>4. Distribution</td>
<td>- Ensure equitable distribution</td>
<td>- Distribute unevenly</td>
</tr>
<tr>
<td>5. Maintenance</td>
<td>- Regular maintenance</td>
<td>- Neglect maintenance</td>
</tr>
<tr>
<td>6. Monitoring</td>
<td>- Conduct regular monitoring</td>
<td>- Ignore monitoring entirely</td>
</tr>
</tbody>
</table>

At a Glance

- **Compliance**
 - Follow all guidelines and policies
 - Use appropriate equipment and materials
 - Ensure water quality

- **Compliance Issues**
 - Violating hygiene guidelines
 - Using inappropriate material
 - Miscalculating water treatment
 - Uneven distribution
 - Neglecting maintenance
 - Ignoring monitoring

- **Compliance Recommendations**
 - Educate users on importance of compliance
 - Implement strict policies and guidelines
 - Use feedback to improve compliance

- **Compliance Strategies**
 - Regular training sessions
 - Use monitoring tools
 - Implement penalties for non-compliance

- **Compliance Tools**
 - Training manuals
 - Monitoring kits
 - Compliance audits
<table>
<thead>
<tr>
<th>Scottish Environment Protection Agency</th>
<th>Water Supply Borehole Location, Construction and Headworks 6</th>
<th>At a Glance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Practice</td>
<td>Bad Practice</td>
<td>Example</td>
</tr>
<tr>
<td>Acute measurement of precipitation quantity.</td>
<td>Acute measurement of precipitation quantity.</td>
<td>Acute measurement of precipitation quantity.</td>
</tr>
<tr>
<td>Aged water not to be passed. Water must be</td>
<td>Aged water not to be passed. Water must be</td>
<td>Aged water not to be passed. Water must be</td>
</tr>
<tr>
<td>Dangerous, stored on site. Close to source.</td>
<td>Dangerous, stored on site. Close to source.</td>
<td>Dangerous, stored on site. Close to source.</td>
</tr>
<tr>
<td>Factors</td>
<td>Factors</td>
<td>Factors</td>
</tr>
<tr>
<td>Access to a building or structure.</td>
<td>Access to a building or structure.</td>
<td>Access to a building or structure.</td>
</tr>
<tr>
<td>Steps to escape to get escape area</td>
<td>Steps to escape to get escape area</td>
<td>Steps to escape to get escape area</td>
</tr>
<tr>
<td>Sealed or open.</td>
<td>Sealed or open.</td>
<td>Sealed or open.</td>
</tr>
<tr>
<td>Spreads material.</td>
<td>Spreads material.</td>
<td>Spreads material.</td>
</tr>
<tr>
<td>Water level measurement.</td>
<td>Water level measurement.</td>
<td>Water level measurement.</td>
</tr>
<tr>
<td>Methods:</td>
<td>Methods:</td>
<td>Methods:</td>
</tr>
<tr>
<td>Low permeability material used.</td>
<td>Low permeability material used.</td>
<td>Low permeability material used.</td>
</tr>
<tr>
<td>An area of soil or clay with a permeable base.</td>
<td>An area of soil or clay with a permeable base.</td>
<td>An area of soil or clay with a permeable base.</td>
</tr>
<tr>
<td>Method: Chamber</td>
<td>Method: Chamber</td>
<td>Method: Chamber</td>
</tr>
<tr>
<td>Precautions:</td>
<td>Precautions:</td>
<td>Precautions:</td>
</tr>
<tr>
<td>All of the made chamber</td>
<td>All of the made chamber</td>
<td>All of the made chamber</td>
</tr>
<tr>
<td>Protecting water and pollution damage.</td>
<td>Protecting water and pollution damage.</td>
<td>Protecting water and pollution damage.</td>
</tr>
<tr>
<td>Precautions:</td>
<td>Precautions:</td>
<td>Precautions:</td>
</tr>
<tr>
<td>Method: sand</td>
<td>Method: sand</td>
<td>Method: sand</td>
</tr>
<tr>
<td>Method: clay</td>
<td>Method: clay</td>
<td>Method: clay</td>
</tr>
<tr>
<td>Method: sand</td>
<td>Method: sand</td>
<td>Method: sand</td>
</tr>
<tr>
<td>Method: clay</td>
<td>Method: clay</td>
<td>Method: clay</td>
</tr>
<tr>
<td>Method: sand</td>
<td>Method: sand</td>
<td>Method: sand</td>
</tr>
<tr>
<td>Method: clay</td>
<td>Method: clay</td>
<td>Method: clay</td>
</tr>
</tbody>
</table>
Footnotes

1. The Environmental Health department of the Local Authority has responsibility for checking the quality of private water supplies, and has powers to condemn sources unfit for human consumption.
2. The casing strength should be designed to suit the ground conditions and installation depth.
3. Steel is more rigid, robust and does not bend.
4. Requires a large enough diameter borehole from the outset. Reductions may be necessary because of unstable ground.
5. Additional secondary casing or a slotted screen with or without a gravel pack may be required in unconsolidated aquifers or unstable ground.
6. Essential if the borehole is artesian.
7. Many boreholes have been found to have a cavity at the base of the permanent casing. This is likely to be due to poor grouting or not drilling deeply enough into solid ground before inserting the permanent casing.
8. Where an above ground completion is not possible.
9. A soakaway will not work effectively if the manhole chamber is constructed in low permeability ground or below the water table.
10. Two dip tubes should be considered where water level measurement is to be by manual dip meter and data logger.
12. Methane can be found naturally or be derived from landfills or other sources. Hydrogen sulphide and carbon dioxide can be emitted naturally. These pose a potential hazard where man access is necessary into a confined space.
Below Ground Completion – Acceptable GOOD Practice
(only where an above ground completion is impractical)
General Schematic Section of an Abstraction Borehole